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Abstract

This paper details the generation of multi-scale flow structure in a package with heat sources. The model is based on

abandoning two common assumptions (1) the assumption that there are many channels (components) in the package,

which is traditionally made to exploit simplifications due to symmetry, and (2) the assumption that the heat-generating

components have negligible thickness. Numerical simulations document the flow stagnation and separation generated

by blunt heat sources, and the effect of these flow phenomena on the optimized internal flow structure. The effect of

asymmetric thermal boundary conditions on the optimal spacing between heat-generating plates is significant. If the

package has some channels with symmetric boundary conditions, and some with asymmetric boundary conditions, then

the optimal structure has multiple spacings. The effect of freedom on design performance is documented by optimizing

competing configurations that have different numbers of degrees of freedom.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

An emerging body of work [1–13] draws attention to

the link between the maximization of the heat transfer

rate packed into a fixed volume and the development

of the internal structure of the package through which

the coolant flows. This link represents a most fundamen-

tal optimization opportunity, which is applicable not

only to the cooling of heat-generating packages but to

flow structures in general. Spacings between solid parts
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must be sized in an optimal way, which is tailored to

the intensity of the flow regime—tighter spacings where

flows are faster. Spacings must be distributed in a certain

way (non-uniformly) through a given volume—tighter

spacings near the frontal region of the package. These

features continue to hold as the size of the package de-

creases to dimensions so small that slender channels

and boundary layers disappear, and the flow structure

becomes a �designed porous medium� [1,14].
In summary, the link between the maximization of

heat transfer density and geometry is an invitation to

the discovery of flow architecture. The generation of

flow configuration is the mechanism through which the

heat transfer device achieves its global objective. This
ed.
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Nomenclature

Be pressure difference number, DP Æ L2/la
C global thermal conductance, Eq. (12)

cP specific heat at constant pressure,

J kg�1 K�1

dD spacing used for the finite difference approx-

imation, m

D wall-to-wall spacing, m

H heat function, W m�1

k thermal conductivity, W m�1 K�1

Ld extended inflow length, m

Lu extended outflow length, m

P pressure, Pa

Pr Prandtl number

q0 heat transfer rate per unit length, W m�1

q000 heat flux, W m�2

R residual vector

Re Reynolds number

t heat source thickness, m

Tmax peak wall temperature, K

T0 inlet fluid temperature, K

u horizontal velocity component, m s�1

u solutions vector

v vertical velocity component, m s�1

x,y Cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2 s�1

DD increment, m

e penalty parameter, m s kg�1

l dynamic viscosity, Pa s

g relative performance, Eq. (24)

m kinematic viscosity, m2 s�1

q density, kg m�3

s shear stress, N m�2

Subscripts

H high

it iteration index

L low

max maximum

opt optimum

Superscript

� dimensionless variables
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mechanism, or principle of geometry generation is now

recognized as the constructal law [1,3].

The optimized spacings that have been uncovered

so far were based on greatly simplifying assumptions,

which made them tractable analytically. Chief among

these is the assumption that there is a large number of

solid components in a package, so large that it is suffi-

cient to focus the analysis on a single spacing [7,15–

20]. According to this assumption, the existence of walls

that confine the package is neglected. Another frequent

assumption is to neglect plate thicknesses in packages

consisting of many parallel plates. This assumption sim-

plifies the flow and the ensuing analysis, because stream-

lines remain essentially straight, and two-dimensional

flow features are neglected (e.g., leading edge separation,

flow upstreams of the package).

In this paper we study the optimization and genera-

tion of internal structure under considerably more real-

istic assumptions. We abandon the �many plates�
assumption and optimize the placement of very few

heat-generating plates in a given space. The plates have

thicknesses that cannot be neglected. Flows are two-

dimensional, with secondary features such as separation

downstream of the leading edges, and stagnation in

front of every solid part. We focus on increasing

Reynolds numbers, because secondary flows become

stronger as the Reynolds number increases. We also

document the effect of the confining walls, as well as
the effect of asymmetry, for example, the case when

the heat-generating component faces an adiabatic wall.
2. Mathematical formulation

Consider first the simplest configuration, which is the

two-dimensional asymmetrically heated channel with

one source, Fig. 1. The bottom wall is subject to a con-

stant heat flux of strength q000. The height of the heat

source is t. The channel is cooled by a single-phase fluid

at T0 which is forced into the channel by a specified pres-

sure difference (DP = PH � PL). The coolant is modeled

as a Newtonian fluid and with constant properties. The

dimensionless equations for the steady-state conserva-

tion of mass and momentum are

o~u
o~x

þ o~v
o~y

¼ 0 ð1Þ

Be
Pr

~u
o~u
o~x

þ ~v
o~u
o~y

� �
¼ � oeP

o~x
þ o2~u

o~x2
þ o2~u

o~y2
ð2Þ

Be
Pr

~u
o~v
o~x

þ ~v
o~v
o~y

� �
¼ � oeP

o~y
þ o2~v

o~x2
þ o2~v

o~y2
ð3Þ

Be ~u
oeT
o~x

þ ~v
oeT
o~y

 !
¼ o

2eT
o~x2

þ o
2eT
o~y2

ð4Þ



Fig. 1. Two dimensional channel heated asymmetrically.

2664 A.K. da Silva et al. / International Journal of Heat and Mass Transfer 48 (2005) 2662–2672
where the dimensionless pressure difference is defined

[21,22] as Be = DPL2/la. The non-dimensionalization

of the governing equations is achieved by defining the

variables

ð~x; ~y; eD;~t; eLu; eLdÞ ¼
ðx; y;D; t; Lu; LdÞ

L
ð5Þ

ð~u;~vÞ ¼ ðu; vÞ
ðDPL=lÞ ð6Þ

eT ¼ T � T 0

q000L=k
ð7Þ

eP ¼ P
DP

ð8Þ

The origin of the Cartesian frame (x,y) is located in the

bottom left corner of the computational domain, as

shown in Fig. 1. The boundary conditions are

ab; gh; ef and ij : ~v ¼ oeT
o~y

¼ 0

ag : eP ¼ 1 and eT ¼ 0

fj : eP ¼ 0 and
oeT
o~x

¼ 0

hi : ~u ¼ ~v ¼ 0 and
oeT
o~y

¼ 0

cd : ~u ¼ ~v ¼ 0 and ~q ¼ q00

q000
¼ 1

bc and de : ~u ¼ ~v ¼ 0 and
oeT
o~x

¼ 0

ð9Þ

The computational domain has three sections: the

main channel of size (D � t) · L and the upstream and

downstream extensions of sizes D · Lu and D · Ld,

respectively. The lengths of Lu and Ld were determined

based on accuracy tests, by varying them and monitor-

ing the changes in the hot spot temperature (Tmax) for

each geometric configuration that was simulated. Tests

showed that Tmax becomes insensitive to increments in

Lu and Ld when both are larger than 0.5L. These lengths

are indicated in Fig. 1, but are not drawn to scale. The
energy equation was not solved in the solid domain in-

side the heat source. Instead, ~q ¼ 1 was applied on the

horizontal surface, disregarding in this way the temper-

ature gradient inside the heat source.

The numerical simulations were conducted using a

code [23] based on the Galerkin finite elements method.

The numerical domain was discretized non-uniformly

using quadrilateral elements with nine nodes in each

one. Refinement tests showed that the best grid is non-

uniform in the y direction, with the smaller elements lo-

cated close to the heated wall. The tests further showed

that 101 nodes per unit of length L in the x direction and

201 per L in the y direction guarantee a grid accuracy in

which the solution (Tmax) changes by less than 1% when

the mesh is doubled. This conclusion is valid throughout

the range 105 6 Be 6 107.

The conservation equations were solved in a simulta-

neous fully coupled manner. Because the flow is

incompressible, we used the concept of artificial com-

pressibility in order to determine the pressure uniquely.

The pressure acts as a relaxation parameter to satisfy

the continuity equation. Accordingly, the continuity

equation is discarded and the pressure is eliminated from

the momentum equations by using

P ¼ � 1

e
ou
ox

þ ov
oy

� �
ð10Þ

Here e is the specified penalty factor, e = 10�8. Such a

technique is unrealistic for unsteady flows, however,

when the solution approaches the steady state, the left

hand side term of Eq. (10) vanishes and the original con-

tinuity equation for incompressible fluids is recovered.

The non-linear equations resulting from the finite ele-

ment were solved in the range 105 6 Be 6 107 by succes-

sive substitutions followed by the Newton–Raphson

scheme. The convergence criterion was controlled by

two parameters: the solution vector ui, and the residual

vector R(ui),

jjuit � uit�1jj
jjuitjj

6 0:0001 and
jjRðuitÞjj
jjR0jj

6 0:0001 ð11Þ



Table 1

Comparison between numerical and theoretical results for
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where k Æk is the Euclidean norm, �it� is the iteration

index, and R0 is a reference vector, typically R(u0).

optimal spacing and maximized thermal conductance

Be
Dopt

L Be1=4 2q0L
kDoptðTmax�T 0ÞBe

�1=2

Numerical Theoretical

[1,24]

Numerical Theoretical

[1,24]

105 3.03 3.2 0.391 0.4

106 3.05 3.2 0.394 0.4

107 3.12 3.2 0.394 0.4
3. Optimization procedure

For an asymmetrically heated channel, the plate-to-

plate optimization opportunity consists of noticing that

(i) larger D means smaller Tmax, and (ii) small D means a

compact channel. In the maximization of compactness,

or heat transfer density, the figure of merit is the global

conductance C defined as

C ¼ q0L
kDðTmax � T 0Þ

¼ 1eDeT max

ð12Þ

where q 0 is the total heat current, k is the fluid thermal

conductivity, D is the plate-to-plate spacing, and

(Tmax � T0) is the peak excess temperature reached at

any point on the bottom wall. In the C definition, D is

an assumed geometric parameter, and Tmax is an un-

known to be determined numerically. The numerical

search is for the configuration in which

oC

oeD ¼ 0; at eD ¼ eDopt ð13Þ

Newton�s method was used in order to determine the

optimal configurations. For fixed values of Be and Pr,

one can approximate the objective function as a Taylor

series for a given initial plate-to-plate spacing eDk
,

oC

oeD
����eDk

ffi oC

oeD
����eD¼eDopt

þ DeDko
2C

oeD2

����eDk
ð14Þ

Because the first term on the right hand side is zero wheneD ¼ eDopt, one can estimate the increment DeDk
that

changes the configuration from the initial guess DeDk

near the optimum,

DeDk �

oC

oeD jeDk

o2C

oeD2
jeDk

ð15Þ

This suggests that the new configuration is

eDkþ1 ffi eDk � DeDk ð16Þ

where the sign ± ensures that the new spacing eDkþ1
con-

verges toward the optimal solution.

The derivatives of Eq. (16) were determined by a sec-

ond order central finite difference approximation. This

means that for every guess eDk
, two additional (neighbor-

ing) configurations were needed, eDk þ DeDk
and eDk�

DeDk
. The neighboring configurations were located at

DeD ¼ 0:001 for all the simulations that we performed.

The optimization procedure described by Eqs. (15) and

(16) was repeated until the convergence criterion

DeDk
6 0:0001 was reached. The number of iterations
needed in order to reach the specified convergence

was between 4 and 6, depending on the initial guess for eDk
.

The numerical results were further tested by compar-

ing the theoretical and numerical optimal plate-to-plate

and maximal global thermal conductance C obtained for

a symmetrically heated channel. In this test case, the top

and bottom walls that define the channel release a con-

stant heat flux q00. Table 1 summarizes the comparison

between the numerical and theoretical results. The theo-

retical results shown in Table 1 were obtained based on

the intersection of asymptotes method [1,24]: the maxi-

mization of the global thermal conductance of a stack

of horizontal plates with negligible thickness in forced

convection. In this case, the optimal configuration

emerges from the comparison of performance in two

flow limits (i) fully developed flow (D! 0), and (ii)

boundary layer flow (D� 2d), where d is the scale of

the thickness of the thermal boundary layer. The theo-

retical results show that the optimal spacing eDopt must

scale as Be�1/4, and the maximized thermal conductance

must scale as Be1/2. The agreement is within 5.6% for the

optimal plate-to-plate spacing, and 2.3% for the maxi-

mized global thermal conductance. The agreement

improves as the pressure drop number increases.
4. Results

Fig. 2 shows how the selection of channel spacing af-

fects the global thermal conductance of the configura-

tion shown in Fig. 1. The effect of eD on C is not

symmetric about the optimal plate-to-plate spacing.

The curve is much steeper when eD < eDopt. On the other

hand, as eD increases beyond eDopt, the maximum temper-

ature Tmax continues to drop because U1 increases

(U1 � D2/3, Ref. [24, p. 138]), where U1 is the mean

velocity of the stream driven into the channel. This

means that when D > Dopt, the reduction in global ther-

mal performance (heat transfer density) is due to the in-

crease in D, which overcomes the augmentation effect

due to decreasing Tmax.

Fig. 3 shows the variation of the actual spacing

ðeDopt �~tÞ with the pressure drop number. The effect of

the heat source thickness on the group ðeDopt �~tÞ is



Fig. 2. The effect of the plate-to-plate spacing on the global

thermal conductance.

Fig. 3. The optimal channel spacing as a function of the heat

source thickness.

Fig. 4. The maximum global thermal performance that corre-

sponds to the optimal plate-to-plate spacing.
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noticeable, and all the curves are approximately parallel

to ðeDopt �~tÞ � Be�1=4. In the same figure, the dashed line

represents the optimal channel width determined theo-

retically [25], where eDoptBe1=4 ¼ 3:14. Nevertheless, two

effects of ~t on eDopt can be identified. Instead of the the-

oretical prediction [1,24], the more accurate correlation

is of the typeeD �~t � aBe�m ð17Þ

where the dimensionless parameters a and m depend on
~t. In the range of ~t studied, the factor a is smaller than

3.14, which is the value for an asymmetrically heated

channel. In addition, a increases with ~t. The factor m de-

creases as ~t increases.
Fig. 4 shows the effect of the heat source thickness on

the maximized global thermal conductance. As can be

expected, Cmax decreases substantially as ~t increases.

This can be explained based on Fig. 3, which shows that

the group ðeDopt �~tÞ is essentially constant throughout
the range 105 6 Be 6 107. This means that the drop in

performance is directly proportional to ~t. The dashed

line represents the maximum theoretical global conduc-

tance for an asymmetrically heated channel with ~t ¼ 0

[25], where Cmax = 0.205Be1/2. The agreement is good

in an order of magnitude sense, with a maximum devia-

tion of 13% between the theoretical prediction and the

numerical results for ~t ¼ 0.

Fig. 5 shows the streamlines and heatlines in the

(D � t) · L region, for three different configurationseD ¼ 0:152, 0.2 and 0.3, for Be = 107, Pr = 1 and
~t ¼ 0:1. As eD increases, flow separation and recircula-

tion covers a larger section of the heat-generating sur-

face, indicating the approach to turbulence. This

conclusion is backed by the calculation of the local Rey-

nolds number based on mean velocity um and transversal

flow length (D � t),

Re ¼ umðD� tÞ
m

¼ ~umðeD �~tÞBe
Pr

ð18Þ

By evaluating ~um numerically, we find that the local Rey-

nolds numbers for configuration (a), (b) and (c) are 270,

750 and 1370. This is consistent with the local Reynolds

number criterion for transition to turbulence [1,24],

which indicates that in channel flow at transition Re is

on the order of 103. Another interesting conclusion de-

rived from Fig. 5 is that, even at high pressure drop

numbers (Be P 107), the appearance of separation is

negligible when ðeD �~tÞ � ðeDopt �~tÞ. From Fig. 3 we

know that ðeDopt �~tÞ ¼ 0:05204 or eDopt ¼ 0:15204 when

Be = 107 and ~t ¼ 0:1. For the exact same pressure drop

(Be) and heat source height ð~tÞ, Fig. 5b shows no sign

of flow separation when eD ¼ 0:2. This means that, for

a fixed pumping power (Be) and heat source height

ðeDÞ, separation will begin to occur when ðeD �~tÞ �
ðeDopt �~tÞ. These conclusions are supported by the fact

that the group ðeDopt �~tÞ is reasonably constant for flows



Fig. 5. Streamlines and heatlines showing the effect of channel spacing on flow separation and recirculation, when Be = 107, Pr = 1 and
~t ¼ 0:1: (a) ~Dopt ¼ 0:152; (b) ~D ¼ 0:2; (c) ~D ¼ 0:3.
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driven by pressure differences in the range 105 6

Be 6 107, and with heat source widths in the range

0 6 ~t 6 0:2.
The heatlines presented in the lower frames of Fig. 5

were obtained by numerically solving the Poisson-type

equation

o2 eH
o~x2

þ o2 eH
o~y2

¼ Be
oð~ueT Þ
o~y

� oð~veT Þ
o~x

" #
ð19Þ

where eH is the dimensionless heatfunction [24] defined

as eH ¼ H=q000L. The right hand side of Eq. (19) works

as a source term. The field of heatlines was determined

only in the ½ðeD �~tÞ � eL� domain. The boundary condi-

tions are d eH =d~x ¼ �Be~veT þ deT =d~y for the segments

ch and di defined in Fig. 1, and d eH =d~x ¼ deT =d~y for

cd and hi. The velocity and temperature fields were ob-

tained with our finite elements package [23]. These fields

were fed into a second order central finite difference C

code, which determined the heatlines. The linear system
solver used for Eq. (19) is similar to the preconditioned

biconjugate gradient solver found in [26,27]. The conver-

gence criterion was 10�6. In Fig. 5a the heatlines come

out of the heated wall in an equidistant pattern, and

are pushed downstream by the flow. The heatlines of

Fig. 5c show that the occurrence of flow separation dis-

torts the heatlines upstream. A regular heatline pattern

is established right after the end of the flow separation.

Even though the effect of the separation is recognizable

on the heat flow pattern for large values of D, the heat-

line pattern is well behaved when D � Dopt (Fig. 5b).

This is consistent with the negligible effect of flow sepa-

ration on Dopt.

This conclusion is further supported by Fig. 6, which

shows the local shear stress on the heated plate of the

configuration shown in Fig. 1, for eD ¼ eDopt, 0.2, 0.3

and 0.4. The reattachment length is indicated with circles

drawn at ~s � 0. According to Fig. 6, the reattachment

length decreases with D, and it is approximately zero

when D = Dopt.



Fig. 6. The effect of the wall-to-wall spacing on the reattach-

ment position.

Fig. 8. The optimized spacing for the channels shown in Fig. 7.
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A more complex configuration is shown in Fig. 7,

where there are three heat-generating surfaces and two

channels. The new numerical domain is defined by the

same boundary conditions as in Fig. 1. More complex

flow structures may also have secondary flow features

when D� Dopt. However, the streamlines for the con-

figuration of Fig. 7 are omitted due to convergence

problems for values of D� Dopt. The reason for such

numerical instabilities is that as D increases the package

loses its �slender look�, and the local Reynolds number

increases reaching into the turbulent range. The optimi-

zation procedure is the same as for the configuration of

Fig. 1. The lone degree of freedom is D: the existence of

an optimal spacing is expected on the same theoretical

grounds as in Section 3.

Fig. 8 shows the behavior of the optimal channel

spacing ðeDopt=2�~tÞ versus the pressure drop number

Be for the configuration of Fig. 7. Three values for the

heat source thickness were considered. The collapse of
Fig. 7. Package with three hot s
the three curves shows that the effect of the thickness ~t
on the optimized spacing is minimal. This means that

the optimized spacing is robust with respect to varia-

tions in source thickness. Another feature of robustness

follows from the observation that the transversal flow

length of Fig. 7 is almost equal to the transversal flow

length of Fig. 1,

ðeDopt=2�~tÞFig:7 � ðeDopt �~tÞFig:1 ð20Þ

Fig. 9 shows the maximized thermal performance of

the configuration of Fig. 7 versus the pressure drop

number. The figure of merit given by Eq. (12) still holds

for the channel with three sources (Fig. 7), however, in

Fig. 7 the hot surface has the length 3L, and the maxi-

mum global thermal conductance is

Cmax ¼
3q0L

kDoptðTmax � T 0Þ
¼ 3eDopt

eT max

ð21Þ

The detrimental effect of ~t on Cmax, which was observed

in Fig. 1, is also present in configurations with more

than one heat source, Fig. 7. Based on Eq. (20) and
urfaces and two channels.



Fig. 9. The maximized global thermal conductance for the

configuration shown in Fig. 7.
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Fig. 8, which shows the constancy on the transversal

flow length regardless of the height of the heat source,

we conclude that the reduction of the global thermal

conductance Cmax is roughly proportional to ~t.
Next, we add one more degree of freedom to the con-

figuration shown in Fig. 7, and the objective becomes

the maximization of the global thermal conductance C

with respect to two independent channel widths,eD1 and eD2, where eD ¼ ð2~t þ eD1 þ eD2Þ as shown in

Fig. 10. The boundary conditions of Figs. 1 and 7 still

hold, however, the optimization procedure does not.

For configurations with two degrees eD ¼ f ðeD1; eD2Þ,
Eq. (14) becomes the Hessian matrix (i.e., the Jacobian

of the derivatives oC=oeD1 and oC=oeD2Þ

o2C

oeD2

1

o2C

oeD1oeD2

o2C

oeD1oeD2

o2C

oeD2

2

266664
377775 DeD1

DeD2

" #
k

¼

oC

oeD1

oC

oeD2

26664
37775

k

ð22Þ
Fig. 10. Package with three heat sources and t
From the solution of Eq. (22), one can determine the

newest configuration

eDkþ1

1 ¼ eDk

1 � DeDk

1eDkþ1

2 ¼ eDk

2 � DeDk

2

ð23Þ

The applicability of this method is conditioned to the

existence of the inverse of the Hessian matrix. Even

though Newton�s method has a quadratic convergence,

its functionality is directly related to the accuracy of

the derivatives of Eq. (22). This means that for a second

order central finite difference approximation, nine points

are required per iteration. This procedure was compared

with a nested loop optimization, in which the increment

toward the optimal configuration is assumed, and not

calculated as in Newton�s method. The comparison

showed that the nested loop converges faster (i.e., fewer

simulations are needed for one optimal configuration),

given the same initial guess for both methods. The rea-

son is that we already have good initial guesses for eD1

(symmetrically heated channel) and eD2 (asymmetrically

heated channel) from Table 1 and Fig. 3, respectively.

Fig. 11 shows the optimal widths (bold curves) for

the upper asymmetrically heated channel and for the

bottom symmetrically heated channel shown in Fig.

10. The dashed curves represent the optimal channel

width determined theoretically [7,25] for ~t ¼ 0, whereeDopt is equal to 3.2Be1/4 and 3.14Be1/4 for the upper

and lower frames, respectively. Unlike the results of

Fig. 8, where eD1 ¼ eD2 ¼ ðeDopt=2�~tÞ, Fig. 11 shows

that eD1;opt is slightly larger than eD2;opt. For a fixed pres-

sure drop number (Be) and heat source height ð~tÞ; eD1;opt

is on average about 23% larger than eD2;opt. This appar-

ent discrepancy was not captured by the optimal channel

width determined theoretically, which suggests that theeD1;opt is only 2% larger than eD2;opt. Most important is

the fact that both theoretical solutions agree reasonably
wo channels with independent spacings.



Fig. 13. The comparison of the relative performance of the

packages shown in Figs. 7 and 10.

Fig. 11. The optimal spacings for the package shown in Fig. 10.
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well with the numerical results. This confirms the robust-

ness of the optimal spacing, even though the theoreticaleD1;opt and eD2;opt were obtained in the limit where the hot

blades have zero thickness.

Fig. 12 shows the maximized global conductance of

Eq. (21), which is labeled C2m in reference to the two de-

grees of freedom ðeD1; eD2Þ. Like the behavior shown in

Figs. 4 and 8, the heat source height ð~tÞ has a detrimental

effect on the thermal performance of the configuration

of Fig. 10. The reduction of performance is roughly pro-

portional to ~t, because eD1;opt and eD2;opt are basically

insensitive to changes in ~t.
Fig. 13 shows the relative performance (g) of the con-

figurations presented in Figs. 7 and 10, where g is de-

fined as
Fig. 12. The maximized global thermal performance of the

package shown in Fig. 10.
g ¼ 100� C2m;Fig:10 � Cmax;Fig:7

Cmax;Fig:7

���� ���� ð24Þ

The configuration with more degrees of freedom (Fig.

10) performs within 2–6.5% better than its simpler coun-

terpart (Fig. 7). In conclusion, more freedom is good for

global performance [3]. The same figure shows that the

difference in performance between these two configura-

tions reduces as Be increases.
5. Conclusions

In this paper we employed a more realistic numerical

model to study the optimization of internal spacings in

packages with heat-generating plates in forced convec-

tion. The model was based on relaxing two of the

classical assumptions that modelers of parallel-plates

packages make. First, we did not assume that the thick-

ness of a heat-generating plate is negligible. The numer-

ical results showed that the effect of finite plate thickness

is to generate secondary flow features such as stagna-

tion, separation and recirculation. These flow features

have an effect on the optimized plate-to-plate spacings,

however, this effect does not change the order of magni-

tude of the results.

The second classical assumption that we discarded is

that the package contains a very large number of plates.

The symmetry (repeatability of the channel flow field)

that was the centerpiece of past numerical studies, was

replaced in the present work by the need to simulate

the entire (asymmetric) flow field through the package

and its immediate vicinity. Our results show that when

there are very few plates in the package, and when some

of the plate surfaces are adiabatic, there is more than

one optimal internal length scale. The optimized pack-

age is a multi-flow structure with multiple scales the sizes
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and positions of which are optimized. Flow structures

with multiple scales that are distributed optimally (hence

non-uniformly) are encountered elsewhere in constructal

design, for example in tree-shaped flow architectures [1–

3,28–32].

The global performance of the package increases as

the number of optimized dimensions (degrees of free-

dom) increases. Diminishing returns occur in the direc-

tion of higher optimized complexity. For example, the

configuration in which two features can be optimized

(D1 and D2 in Fig. 10) has a global performance that

is 2–6.5% higher than in an optimized configuration with

just one degree of freedom (Fig. 7).

Future work may extend the present study to heat

transfer package models with even higher levels of com-

plexity and realism. Good candidates are packages with

larger numbers of components and asymmetric surface

heating conditions, three-dimensional flow simulations

that account for all the walls that confine the package,

and the finite thermal conductivity of the parts that gen-

erate heat. Another aspect that deserves future study is

the robustness of this class of optimized structures, for

example, a comparison can be made between the maxi-

mized performance of structures with optimized multi-

ple scales, and the performance of corresponding

structures built with a single spacing based on existing

results (e.g., Ref. [1]). If the difference is not great, then

the optimized complex flow structure is robust, and it

promises to perform close to the highest level even if

not every single degree of freedom is exploited during

the development of the flow architecture.
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